ФЛОРИСТИЧЕСКИЙ СОСТАВ И ХОЗЯЙСТВЕННАЯ ЦЕННОСТЬ ЛУГОВОГО ФИТОЦЕНОЗА

Floristic composition and economic value of meadow phytocenosis С.Е. Сапарклычева, доцент Н.М. Пояркова, доцент

Уральский государственный аграрный университет (Екатеринбург, ул. Карла Либкнехта, 42)

Рецензент: Л.Б. Каренгина, кандидат сельскохозяйственных наук, доцент.

Аннотация

ceae that do not have fodder value.

Проведено геоботаническое описание лугового фитоценоза, который используется для выпаса крупного рогатого скота. В сообществе представлены три агроботанические группы: злаки, бобовые и разнотравье. Доминируют ценные кормовые злаки ежа сборная, полевица белая, тимофеевка луговая, а также клевер луговой и клевер ползучий. Разнотравье представлено не имеющими кормовой ценности растениями из семейства Астровые.

Ключевые слова: луговой фитоценоз, кормовые растения, геоботаническое описание. **Summary**

The geobotanical description of the meadow phytocenosis, which is used for cattle grazing, was carried out. There are three agrobotanical groups in the community: cereals, legumes and motley grass. valuable fodder plants that dominate: *Dactylis glomerata l.*, *Agrostis stolonifera L.*, *Phleum pratense l.*, *Trifolium pratense l.*, *Trifolium repens l.* Motley grass are represented by plants of the *Astera-*

Key words: meadow phytocenosis, forage plants, geobotanical description.

Всесторонние исследовании растительных сообществ в их связи с факторами среды: климатом, почвой, деятельностью животных, влиянием человека необходимы для разработки классификации лесов, лугов, болот и других типов растительного покрова с целью их правильного освоения и использования.

Работу проводили во время учебной практики, сочетая учебную и исследовательскую деятельность [4]. Целью выполненной работы было геоботаническое описание неокультуренного лугового фитоценоза, используемого для выпаса крупного рогатого скота из личных хозяйств. В связи с этим была поставлена задача получения следующих характеристик фитоценоза: флористический состав; встречаемость и обилие отдельных видов; проективное покрытие; распределение видов по ярусам; выяснение доминирующих и субдоминирующих видов; стадии развития (фенологические фазы); хозяйственная ценность зарегистрированных видов и фитоценоза в целом.

Исследованный фитоценоз расположен в окрестностях поселка Студенческий в Белоярском районе Свердловской области. Климатические условия района в целом характеризуются умеренно-теплыми погодными условиями с достаточным количеством осадков для роста и формирования продуктивности сельскохозяйственных культур: количество дней с температурой выше 10° C — 100-110 дней; сумма среднесуточных температур выше 10° C — $1500-1700^{\circ}$ C; количество атмосферных осадков за вегетационный период 250-350 мм; средняя месячная температура самого теплого месяца — июля составляет $17,6^{\circ}$ C.

Преобладающий тип почвы — чернозем оподзоленный общей мощностью гумусового горизонта 60 см, с реакцией среды близкой к нейтральной и высокой степенью насыщенности основаниями, по агрохимическому анализу чернозем оподзоленный относится к лучшим почвам в Свердловской области.

На исследуемой территории фитоценоза методом случайного выбора выделили десять учетных площадок, площадью 1 m^2 каждая, на которых провели ботанические исследования и определили необходимые для геоботанического описания показатели по общепринятым методикам [5, 6].

Флористический состав определяли по числу видов, представленных в сообществе. Встречаемость видов в сообществе - по коэффициенту Раункиера, определяемым по формуле R = 100 а / п, где а — число площадок, в которых данный вид был зарегистрирован, п — общее число обследованных площадок. Обилие особей определяли глазомерно по шкале Друде с четырьмя ступенями: Sol — единично, редко; Sp — изредка, рассеянно; Cop — обильное распространение, Soc — фоновое растение. В дополнение к шкале Друде использовали градации: Cop3 — расстояние между растениями 0—20 см, Cop2 — расстояние между растениями 20 —40 см, Cop1 — расстояние между растениями 40 —100 см, Sp — расстояние между растениями 100 —150 см, Sol — расстояние между растениями более 150 см. Проективное покрытие, позволяющее судить об общей сомкнутости растительного покрова, определяли глазомерно, рассматривая покров сверху вниз, часть почвы покрываемую данным видом выражают в процентах.

Ярусность — вертикальную расчлененность растительного сообщества, определяли по высоте надземных органов растений. Ярусное расположение способствует пространственному обособлению и имеет важное эколого-биологическое значение. В зависимости от занимаемого яруса растения пребывают в разных микроклиматических условиях. От верхнего яруса к нижнему (у поверхности почвы) снижаются интенсивность инсоляции и состав света, повышается содержание CO_2 , увеличивается влажность воздуха и несколько снижается температура [7]. Верхний (1-й) ярус могут составлять высокорослые злаки, средний (2-й) ярус более низкорослые злаки, бобовые и другие. Третий ярус могут заполнять так называемые пастбищные растения, устойчивые к выпасу.

Фенологическую фазу растений определяли по общепринятым методикам [5]. Фенологическая фаза зависит от скорости созревания многолетних трав. Ранние зацветают в конце весны и дают семена в начале лета, к ним относится мятлик луговой. Среднеспелые травы имеют растянутый период цветения и плодоношения, к ним относятся ежа сборная, тимофеевка луговая клевер луговой, клевер ползучий. У этих трав начало цветения совпадает с началом лета, а время созревания семян приходится на середину лета. Позднеспелые травы зацветают в середине лета и дают семена в конце лета, к ним принадлежит полевица белая.

Хозяйственную ценность отдельных видов и фитоценоза оценивали по данным, приведенным в научной литературе [2, 3, 5].

Луговые сообщества состоят из многолетних травянистых мезофитных растений, они приурочены к лесным и лесостепным зонам, поскольку требуют достаточного увлажнения. Виды растений, образующие луговые и пастбищные фитоценозы, делят на четыре агроботанические группы: злаковые, бобовые, осоки и разнотравье, включающее растения разнообразных семейств [1, 2, 3].

На исследованной нами территории луга были представлены три из указанных групп, исключая осоки (таблица 1).

№	Семейство, род, вид	Роль в	Встре-	Оби	Фенофаза	Хозяйственная ценность
п/	comonorizo, pod, snd	фито-	чае-	лие	Топофизи	Trooming the state of the
П		ценозе	мость	JIHC		
11		ценозе	Мятлико	 овые		
2	Ежа сборная	Доми-	100	Soc	Созревание	Высокая кормовая
	Dactylis glomerata l.	нант	100	Boc	Созревание	ценность
	Мятлик луговой	папт	60	Con1	Созревание	Высокая кормовая цен-
			00	Cop1	Созревание	•
	Poa pratensis l.	П	100	G 2	TT	ность, устойчив к выпасу
3	Полевица белая	Доми-	100	Cop3	Начало со-	Ценное кормовое, устой-
	Agrostis stolonifera L.	нант			зревания	чива к выпасу
4	Тимофеевка луговая	Субдо	60	Cop3	Созревание	Высокая кормовая цен-
	Phleum pratense l.	ми-				ность
		нант				
			Бобов	ые		
5	Клевер луговой	Доми	100	Soc	Полное	Высокая кормовая
	Trifolium pratense l.	нант			цветение	ценность
6	Клевер ползучий	Субдо	80	Cop3	Полное	Ценное кормовое
	Trifolium repens l.	ми-		•	цветение	устойчив к
		нант				выпасу
7	Люцерна хмелевидная	Еди-	20	Sol	Цветение	Высокая питательность,
	Medicago lupulina l.	нич			,	быстро от
		ные				растает
		IIDIC	Астров	L NAC	<u> </u>	pactaci
8	Пижма обыкновенная	Еди-	20	Cop1	Цветение	Наиболее токсична во
	Tanacetum vulgare l.	нич	20	Copi	цветепие	
	Tanaceium vaigare i.					время цветения
9	Ромашка аптечная	ные Еди-	100	Sol	Цветение	Нет кормовой ценности,
		, ,	100	301	цветение	-
	Matricaria chamomilla l.	нич				лекарственное
		ные	100			
10	Тысячелистник обыкновен-	Еди-	100	Sol	Цветение	Нет кормовой ценности
	ный	нич				
	Achillea millefolium l.	ные				

Общее проективное покрытие лугового сообщества было более 100 %, надземные органы растений покрывали поверхность почвы полностью и перекрывали друг друга.

Группу злаковых представляют четыре вида, два из которых (ежа сборная и полевица белая) распространены на территории очень обильно и являются доминантами. Группа бобовых представлена тремя видами, два из них (клевер луговой и клевер ползучий) распространены обильно и очень обильно и так же доминируют в данном сообществе. Ежу сборную, тимофеевку луговую, клевер луговой как высокоценные по питательности кормовые многолетние растения выращивают также в полевом кормопроизводстве [2, 3].

Разнотравье выражено очень слабо, оно представлено только тремя видами семейства Астровые, которые не имеют кормовой ценности, один вид (пижма обыкновенная) ядовит, но встречается очень редко.

В соответствии с фитоценологической классификацией лугов, основанной на характеристике луговой растительности и экологоморфологических признаках, исследованный нами

фитоценоз является злаково-бобово-разнотравным лугом. По фитотопологической классификация лугов, учитывающей различия типов местообитания растений (рельеф, увлажнение, почва и др), наш фитоценоз является суходольным лугом.

В исследованном фитоценозе мы выделили три яруса: верхний (первый) был занят верховыми злаками (ежой сборной, тимофеевкой луговой) и пижмой обыкновенной. Второй ярус занимают низовые злаки (полевица белая, мятлик луговой), клевер луговой, люцерна хмелевидная. В третьем, нижнем ярусе находится клевер ползучий.

К концу июля все злаки - ежа сборная, тимофеевка луговая, полевица белая находились в фазе созревания, а бобовые — клевер луговой, клевер ползучий, люцерна хмелевидная и разнотравье - в фазе полного цветения. В связи с пониженными температурами в течение мая и июне цветение трав началось позднее.

Таким образом, исследованный луговой фитоценоз представляет собой устойчивое пастбище, в котором во всех трех ярусах доминируют ценные кормовые злаки и бобовые растения. По литературным данным полевица белая и мятлик луговой отличаются высокой устойчивостью к выпасу, необходимы меры для увеличения обилия и встречаемости тимофеевки луговой и мятлика лугового и для ограничения распространения тысячелистника.

Библиографический список

- 1. Абрамчук А.В. Основные растений сенокосов и пастбищ./А.В.Абрамчук, В.Р.Лаптев. Методические указания к практическим занятиям. Екатеринбург, 2012
 - 2. Андреев Н.Г. Луговое и полевое кормопроизводство. М.: Колос. 1984. 494 с.
 - 3. Коломейченко В.В. Кормопроизводство. СПб.- Издательство "Лань". 2015. 656 с.
- 4. Пояркова Н.М., Сапарклычева С.Е. «Научно-исследовательская деятельность студентов, связь с образовательным процессом». Коняевские чтения.
- 5. Суворов В.В., Воронова И.Н. Ботаника с основами геоботаники. Учебник. Л.:Колос. 1979. 560 с.
- 6. Тиходеева М.Ю., Лебедева В.Х. Практическая геоботаника (анализ состава растительных сообществ): учебное пособие/ Санкт-Петербургский государственный университет, 2015. 166 с. [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/78114#book_name
- 7. Хржановский В.Г., Викторов С.В., Литвак П.В. Ботаническая география с основами экологии растений: Учебник для высших. с.-х. учебных заведений по агрономическим специальностям. М.: Колос.- 1994. 239 с.